1,586 research outputs found

    Early identification of important patents through network centrality

    Full text link
    One of the most challenging problems in technological forecasting is to identify as early as possible those technologies that have the potential to lead to radical changes in our society. In this paper, we use the US patent citation network (1926-2010) to test our ability to early identify a list of historically significant patents through citation network analysis. We show that in order to effectively uncover these patents shortly after they are issued, we need to go beyond raw citation counts and take into account both the citation network topology and temporal information. In particular, an age-normalized measure of patent centrality, called rescaled PageRank, allows us to identify the significant patents earlier than citation count and PageRank score. In addition, we find that while high-impact patents tend to rely on other high-impact patents in a similar way as scientific papers, the patents' citation dynamics is significantly slower than that of papers, which makes the early identification of significant patents more challenging than that of significant papers.Comment: 14 page

    Measuring economic complexity of countries and products: which metric to use?

    Full text link
    Evaluating the economies of countries and their relations with products in the global market is a central problem in economics, with far-reaching implications to our theoretical understanding of the international trade as well as to practical applications, such as policy making and financial investment planning. The recent Economic Complexity approach aims to quantify the competitiveness of countries and the quality of the exported products based on the empirical observation that the most competitive countries have diversified exports, whereas developing countries only export few low quality products -- typically those exported by many other countries. Two different metrics, Fitness-Complexity and the Method of Reflections, have been proposed to measure country and product score in the Economic Complexity framework. We use international trade data and a recent ranking evaluation measure to quantitatively compare the ability of the two metrics to rank countries and products according to their importance in the network. The results show that the Fitness-Complexity metric outperforms the Method of Reflections in both the ranking of products and the ranking of countries. We also investigate a Generalization of the Fitness-Complexity metric and show that it can produce improved rankings provided that the input data are reliable

    Temporal similarity metrics for latent network reconstruction: The role of time-lag decay

    Full text link
    When investigating the spreading of a piece of information or the diffusion of an innovation, we often lack information on the underlying propagation network. Reconstructing the hidden propagation paths based on the observed diffusion process is a challenging problem which has recently attracted attention from diverse research fields. To address this reconstruction problem, based on static similarity metrics commonly used in the link prediction literature, we introduce new node-node temporal similarity metrics. The new metrics take as input the time-series of multiple independent spreading processes, based on the hypothesis that two nodes are more likely to be connected if they were often infected at similar points in time. This hypothesis is implemented by introducing a time-lag function which penalizes distant infection times. We find that the choice of this time-lag strongly affects the metrics' reconstruction accuracy, depending on the network's clustering coefficient and we provide an extensive comparative analysis of static and temporal similarity metrics for network reconstruction. Our findings shed new light on the notion of similarity between pairs of nodes in complex networks

    Calorimetric glass transition in a mean-field theory approach

    Get PDF
    The study of the properties of glass-forming liquids is difficult for many reasons. Analytic solutions of mean-field models are usually available only for systems embedded in a space with an unphysically high number of spatial dimensions; on the experimental and numerical side, the study of the properties of metastable glassy states requires thermalizing the system in the supercooled liquid phase, where the thermalization time may be extremely large. We consider here a hard-sphere mean-field model that is solvable in any number of spatial dimensions; moreover, we easily obtain thermalized configurations even in the glass phase. We study the 3D version of this model and we perform Monte Carlo simulations that mimic heating and cooling experiments performed on ultrastable glasses. The numerical findings are in good agreement with the analytical results and qualitatively capture the features of ultrastable glasses observed in experiments

    Identification of milestone papers through time-balanced network centrality

    Get PDF
    Citations between scientific papers and related bibliometric indices, such as the h- index for authors and the impact factor for journals, are being increasingly used – often in controversial ways – as quantitative tools for research evaluation. Yet, a fundamental research question remains still open: to which extent do quantitative metrics capture the significance of scientific works? We analyze the network of citations among the 449,935 papers published by the American Physical Society (APS) journals between 1893 and 2009, and focus on the comparison of metrics built on the citation count with network-based metrics. We contrast five article-level metrics with respect to the rankings that they assign to a set of fundamental papers, called Milestone Letters, carefully selected by the APS editors for “making long-lived contributions to physics, either by announcing significant discoveries, or by initiating new areas of research”. A new metric, which combines PageRank centrality with the explicit requirement that paper score is not biased by paper age, is the best-performing metric overall in identifying the Milestone Letters. The lack of time bias in the new metric makes it also possible to use it to compare papers of different age on the same scale. We find that network-based metrics identify the Milestone Letters better than metrics based on the citation count, which suggests that the structure of the citation network contains information that can be used to improve the ranking of scientific publications. The methods and results presented here are relevant for all evolving systems where network centrality metrics are applied, for example the World Wide Web and online social networks. An interactive Web platform where it is possible to view the ranking of the APS papers by rescaled PageRank is available at the address http://www.sciencenow.info

    Ranking nodes in growing networks: When PageRank fails

    Get PDF
    PageRank is arguably the most popular ranking algorithm which is being applied in real systems ranging from information to biological and infrastructure networks. Despite its outstanding popularity and broad use in different areas of science, the relation between the algorithm’s efficacy and properties of the network on which it acts has not yet been fully understood. We study here PageRank’s performance on a network model supported by real data, and show that realistic temporal effects make PageRank fail in individuating the most valuable nodes for a broad range of model parameters. Results on real data are in qualitative agreement with our model-based findings. This failure of PageRank reveals that the static approach to information filtering is inappropriate for a broad class of growing systems, and suggest that time-dependent algorithms that are based on the temporal linking patterns of these systems are needed to better rank the nodes

    Quantifying and suppressing ranking bias in a large citation network

    Get PDF
    It is widely recognized that citation counts for papers from different fields cannot be directly compared because different scientific fields adopt different citation practices. Citation counts are also strongly biased by paper age since older papers had more time to attract citations. Various procedures aim at suppressing these biases and give rise to new normalized indicators, such as the relative citation count. We use a large citation dataset from Microsoft Academic Graph and a new statistical framework based on the Mahalanobis distance to show that the rankings by well known indicators, including the relative citation count and Google's PageRank score, are significantly biased by paper field and age. Our statistical framework to assess ranking bias allows us to exactly quantify the contributions of each individual field to the overall bias of a given ranking. We propose a general normalization procedure motivated by the z-score which produces much less biased rankings when applied to citation count and PageRank score

    Ranking species in complex ecosystems through nestedness maximization

    Full text link
    Identifying the rank of species in a social or ecological network is a difficult task, since the rank of each species is invariably determined by complex interactions stipulated with other species. Simply put, the rank of a species is a function of the ranks of all other species through the adjacency matrix of the network. A common system of ranking is to order species in such a way that their neighbours form maximally nested sets, a problem called nested maximization problem (NMP). Here we show that the NMP can be formulated as an instance of the Quadratic Assignment Problem, one of the most important combinatorial optimization problem widely studied in computer science, economics, and operations research. We tackle the problem by Statistical Physics techniques: we derive a set of self-consistent nonlinear equations whose fixed point represents the optimal rankings of species in an arbitrary bipartite mutualistic network, which generalize the Fitness-Complexity equations widely used in the field of economic complexity. Furthermore, we present an efficient algorithm to solve the NMP that outperforms state-of-the-art network-based metrics and genetic algorithms. Eventually, our theoretical framework may be easily generalized to study the relationship between ranking and network structure beyond pairwise interactions, e.g. in higher-order networks.Comment: 28 pages; 2 figure

    The long-term impact of ranking algorithms in growing networks

    Get PDF
    When users search online for content, they are constantly exposed to rankings. For example, web search results are presented as a ranking of relevant websites, and online bookstores often show us lists of best-selling books. While popularity-based ranking algorithms (like Google’s PageRank) have been extensively studied in previous works, we still lack a clear understanding of their potential systemic consequences. In this work, we fill this gap by introducing a new model of network growth that allows us to compare the properties of networks generated under the influence of different ranking algorithms. We show that by correcting for the omnipresent age bias of popularity-based ranking algorithms, the resulting networks exhibit a significantly larger agreement between the nodes’ inherent quality and their long-term popularity, and a less concentrated popularity distribution. To further promote popularity diversity, we introduce and validate a perturbation of the original rankings where a small number of randomly-selected nodes are promoted to the top of the ranking. Our findings move the first steps toward a model-based understanding of the long-term impact of popularity-based ranking algorithms, and our novel framework could be used to design improved information filtering tools
    • …
    corecore